VASP是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包,它基于CASTEP 1989版开发。
在做量子力学相关的研究的时候,这个软件是必不可少的。鉴于VASP编译时比较麻烦,需要对Makefile有所了解,而使用VASP的一般都是非计算机专业的,所以编译安装起来难度较大,经常出这样那样的问题,而作者是计算机专业的,由于种种原因给别人编译了份VASP,这里就根据自己的编译经验写一篇安装参考。
编译时参考的资料
- vasp 5.2编译方法
- VASP编译方法以及错误汇总
- ifc和mpich并行编译vasp
- VASP on intel em64t and MKL
- GotoBLAS的安裝過程(Core2Duo)與如何加入VASP進行編譯
- GotoBlas的编译 – [并行运算]
- 关于vasp并行和串行的关系
- VASP手册
编译环境:
操作系统:Fedora release 13 (Goddard)
C编译器:gcc 4.4.5
Fortran编译器:ifort 11.1
MKL:10.2.6.038
MPI:openmpi-1.4.3
编译 VASP 的难点在于 Makefile 的修改,要根据自己的电脑硬件和软件环境选择合适的 Makefile 文件,然后修改,作者用的是makefile.linux_ifc_P4。
修改 Makefile 过程中要安装的软件和库:
- CPP预编译器
- Fortran 编译器
- BLAS数学库
- fftw傅里叶变换相关的库
- MPI环境
一个一个来解决
1)CPP预编译器。这个在Linux系统下如果安装了gcc编译环境的话,一般都有,不同发行版有不同的安装方法,都很方便
2)Fortran 编译器可以有很多选择,一般都用intel的ifort,以前是ifc,因为它有非商业版的,只要你用于非商业方面的开发,就可以用这个编译器,它的性能也不错,专门针对intel cpu优化,还有相应的MKL数学库,所以作为首选。在google中搜索关键字“intel fortran compiler non-commercial“,搜索结果的前两个就是。
3)BLAS数学库,这个就用intel的MKL,也是非商业版(intel的MKL库下载地址和编译器在一个地方,所以要用MKL的话可以用2的方法找下载地址)。作者在Makefile中的注释推荐用Kazushige Goto’s BLAS,说这个更快,所以我们也可以用这个, Goto’s BLAS在这里下载,http://www.tacc.utexas.edu/tacc-projects/gotoblas2/downloads/。
4)fftw傅里叶变换相关的库。去这里http://www.fftw.org/下载最新版的即可。
5)MPI编译器。我们用openmpi,这是MPI的开源实现,这里http://www.open-mpi.org下载。
各个软件和库的编译安装在参考文献中都能找到,就不再详细列出。
值得注意的问题
一是 intel编译器如何下载以前的版本。
在下载时展开Additional downloads, updates, and versions.
会看 从下拉菜单中选择其它软件包:
然后选择想要的就行了。
二是拷贝 fftw3.f 到vasp代码目录时注意,make clean会删除fftw3.f,下次make之前要再次拷贝。
贴一下我的makefile,这是并行的版本
.SUFFIXES: .inc .f .f90 .F
#———————————————————————–
# Makefile for Intel Fortran compiler for Pentium/Athlon/Opteron
# bases systems
# we recommend this makefile for both Intel as well as AMD systems
# for AMD based systems appropriate BLAS and fftw libraries are
# however mandatory (whereas they are optional for Intel platforms)
#
# The makefile was tested only under Linux on Intel and AMD platforms
# the following compiler versions have been tested:
# – ifc.7.1 works stable somewhat slow but reliably
# – ifc.8.1 fails to compile the code properly
# – ifc.9.1 recommended (both for 32 and 64 bit)
# – ifc.10.1 partially recommended (both for 32 and 64 bit)
# tested build 20080312 Package ID: l_fc_p_10.1.015
# the gamma only mpi version can not be compiles
# using ifc.10.1
#
# it might be required to change some of library pathes, since
# LINUX installation vary a lot
# Hence check *\*ALL** options in this makefile very carefully
#———————————————————————–
#
# BLAS must be installed on the machine
# there are several options:
# 1) very slow but works:
# retrieve the lapackage from ftp.netlib.org
# and compile the blas routines (BLAS/SRC directory)
# please use g77 or f77 for the compilation. When I tried to
# use pgf77 or pgf90 for BLAS, VASP hang up when calling
# ZHEEV (however this was with lapack 1.1 now I use lapack 2.0)
# 2) more desirable: get an optimized BLAS
#
# the two most reliable packages around are presently:
# 2a) Intels own optimised BLAS (PIII, P4, PD, PC2, Itanium)
# http://developer.intel.com/software/products/mkl/
# this is really excellent, if you use Intel CPU’s
#
# 2b) probably fastest SSE2 (4 GFlops on P4, 2.53 GHz, 16 GFlops PD,
# around 30 GFlops on Quad core)
# Kazushige Goto’s BLAS
# http://www.cs.utexas.edu/users/kgoto/signup_first.html
# http://www.tacc.utexas.edu/resources/software/
#
#———————————————————————–
# all CPP processed fortran files have the extension .f90
SUFFIX=.f90
#———————————————————————–
# fortran compiler and linker
#———————————————————————–
FC=ifort
# fortran linker
FCL=$(FC)
#———————————————————————–
# whereis CPP ?? (I need CPP, can’t use gcc with proper options)
# that’s the location of gcc for SUSE 5.3
#
# CPP_ = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C
#
# that’s probably the right line for some Red Hat distribution:
#
# CPP_ = /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -P -C
#
# SUSE X.X, maybe some Red Hat distributions:
CPP_ = ./preprocess <$*.F | /usr/bin/cpp -P -C -traditional >$*$(SUFFIX) |
#———————————————————————–
# possible options for CPP:
# NGXhalf charge density reduced in X direction
# wNGXhalf gamma point only reduced in X direction
# avoidalloc avoid ALLOCATE if possible
# PGF90 work around some for some PGF90 / IFC bugs
# CACHE_SIZE 1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD
# RPROMU_DGEMV use DGEMV instead of DGEMM in RPRO (depends on used BLAS)
# RACCMU_DGEMV use DGEMV instead of DGEMM in RACC (depends on used BLAS)
#———————————————————————–
CPP = $(CPP_) -DHOST="LinuxIFC" \
-Dkind8 -DCACHE_SIZE=12000 -DPGF90 -Davoidalloc -DNGXhalf \
# -DRPROMU_DGEMV -DRACCMU_DGEMV
#———————————————————————–
# general fortran flags (there must a trailing blank on this line)
# byterecl is strictly required for ifc, since otherwise
# the WAVECAR file becomes huge
#———————————————————————–
FFLAGS = -I/opt/intel/mkl/10.2.6.038/include -I/opt/intel/mkl/10.2.6.038/include/fftw -FR -lowercase -assume byterecl
#———————————————————————–
# optimization
# we have tested whether higher optimisation improves performance
# -axK SSE1 optimization, but also generate code executable on all mach.
# xK improves performance somewhat on XP, and a is required in order
# to run the code on older Athlons as well
# -xW SSE2 optimization
# -axW SSE2 optimization, but also generate code executable on all mach.
# -tpp6 P3 optimization
# -tpp7 P4 optimization
#———————————————————————–
# ifc.9.1, ifc.10.1 recommended
OFLAG=-O3
OFLAG_HIGH = $(OFLAG)
OBJ_HIGH =
OBJ_NOOPT =
DEBUG = -FR -O0
INLINE = $(OFLAG)
#———————————————————————–
# the following lines specify the position of BLAS and LAPACK
# VASP works fastest with the libgoto library
# so that’s what we recommend
#———————————————————————–
# mkl.10.0
# set -DRPROMU_DGEMV -DRACCMU_DGEMV in the CPP lines
#BLAS=-L/opt/intel/mkl100/lib/em64t -lmkl -lpthread
#BLAS=-L/opt/intel/mkl/10.2.6.038/lib/32 -lmkl_sequential -lmkl_core -lpthread
# even faster for VASP Kazushige Goto’s BLAS
# http://www.cs.utexas.edu/users/kgoto/signup_first.html
# parallel goto version requires sometimes -libverbs
#BLAS= /opt/libs/libgoto/libgoto.so
# LAPACK, simplest use vasp.5.lib/lapack_double
LAPACK= ../vasp.5.lib/lapack_double.o
# use the mkl Intel lapack
#LAPACK= -lmkl_lapack
#———————————————————————–
LIB = -L../vasp.5.lib -ldmy \
../vasp.5.lib/linpack_double.o $(LAPACK) \
$(BLAS)
# options for linking, nothing is required (usually)
LINK =
#———————————————————————–
# fft libraries:
# VASP.5.2 can use fftw.3.1.X (http://www.fftw.org)
# since this version is faster on P4 machines, we recommend to use it
#———————————————————————–
#FFT3D = fft3dfurth.o fft3dlib.o
# alternatively: fftw.3.1.X is slighly faster and should be used if available
FFT3D = fftw3d.o fft3dlib.o /opt/mathlibs/fftw/3.2.2/lib/libfftw3f.a
#=======================================================================
# MPI section, uncomment the following lines until
# general rules and compile lines
# presently we recommend OPENMPI, since it seems to offer better
# performance than lam or mpich
#
# !!! Please do not send me any queries on how to install MPI, I will
# certainly not answer them !!!!
#=======================================================================
#———————————————————————–
# fortran linker for mpi
#———————————————————————–
FC=mpif77
FCL=$(FC)
#———————————————————————–
# additional options for CPP in parallel version (see also above):
# NGZhalf charge density reduced in Z direction
# wNGZhalf gamma point only reduced in Z direction
# scaLAPACK use scaLAPACK (usually slower on 100 Mbit Net)
#———————————————————————–
CPP = $(CPP_) -DMPI -DHOST="LinuxIFC" -DIFC \
-Dkind8 -DCACHE_SIZE=4000 -DPGF90 -Davoidalloc -DNGZhalf \
-DMPI_BLOCK=8000 \
-DRPROMU_DGEMV -DRACCMU_DGEMV
#———————————————————————–
# location of SCALAPACK
# if you do not use SCALAPACK simply leave that section commented out
#———————————————————————–
BLAS=-L/opt/intel/mkl/10.2.6.038/lib/32 -lmkl_intel -lmkl_blacs_openmpi -liomp5 -lpthread -lmkl_sequential -lmkl_core -lpthread
#BLACS=$(HOME)/archives/SCALAPACK/BLACS/
#SCA_=$(HOME)/archives/SCALAPACK/SCALAPACK
#SCA= $(SCA_)/libscalapack.a \
# $(BLACS)/LIB/blacsF77init_MPI-LINUX-0.a $(BLACS)/LIB/blacs_MPI-LINUX-0.a $(BLACS)/LIB/blacsF77init_MPI-LINUX-0.a
SCA=
#———————————————————————–
# libraries for mpi
#———————————————————————–
LIB = -L../vasp.5.lib -ldmy \
../vasp.5.lib/linpack_double.o $(LAPACK) \
$(SCA) $(BLAS)
# FFT: fftmpi.o with fft3dlib of Juergen Furthmueller
FFT3D = fftmpi.o fftmpi_map.o fft3dfurth.o fft3dlib.o /opt/mathlibs/fftw/3.2.2/lib/libfftw3f.a
# alternatively: fftw.3.1.X is slighly faster and should be used if available
#FFT3D = fftmpi.o fftmpi_map.o fftw3d.o fft3dlib.o /opt/libs/fftw-3.1.2/lib/libfftw3.a
#FFT3D = fftmpi.o fftmpi_map.o fftw3d.o fft3dlib.o /opt/intel/mkl/10.2.6.038/lib/em64t/libfftw3xf_gnu.a
#———————————————————————–
# general rules and compile lines
#———————————————————————–
BASIC= symmetry.o symlib.o lattlib.o random.o
SOURCE= base.o mpi.o smart_allocate.o xml.o \
constant.o jacobi.o main_mpi.o scala.o \
asa.o lattice.o poscar.o ini.o xclib.o xclib_grad.o \
radial.o pseudo.o mgrid.o gridq.o ebs.o \
mkpoints.o wave.o wave_mpi.o wave_high.o \
$(BASIC) nonl.o nonlr.o nonl_high.o dfast.o choleski2.o \
mix.o hamil.o xcgrad.o xcspin.o potex1.o potex2.o \
metagga.o constrmag.o cl_shift.o relativistic.o LDApU.o \
paw_base.o egrad.o pawsym.o pawfock.o pawlhf.o paw.o \
mkpoints_full.o charge.o dipol.o pot.o \
dos.o elf.o tet.o tetweight.o hamil_rot.o \
steep.o chain.o dyna.o sphpro.o us.o core_rel.o \
aedens.o wavpre.o wavpre_noio.o broyden.o \
dynbr.o rmm-diis.o reader.o writer.o tutor.o xml_writer.o \
brent.o stufak.o fileio.o opergrid.o stepver.o \
chgloc.o fast_aug.o fock.o mkpoints_change.o sym_grad.o \
mymath.o internals.o dimer_heyden.o dvvtrajectory.o vdwforcefield.o \
hamil_high.o nmr.o force.o \
pead.o subrot.o subrot_scf.o pwlhf.o gw_model.o optreal.o davidson.o \
electron.o rot.o electron_all.o shm.o pardens.o paircorrection.o \
optics.o constr_cell_relax.o stm.o finite_diff.o elpol.o \
hamil_lr.o rmm-diis_lr.o subrot_cluster.o subrot_lr.o \
lr_helper.o hamil_lrf.o elinear_response.o ilinear_response.o \
linear_optics.o linear_response.o \
setlocalpp.o wannier.o electron_OEP.o electron_lhf.o twoelectron4o.o \
ratpol.o screened_2e.o wave_cacher.o chi_base.o wpot.o local_field.o \
ump2.o bse.o acfdt.o chi.o sydmat.o
INC=
vasp: $(SOURCE) $(FFT3D) $(INC) main.o
rm -f vasp
$(FCL) -o vasp main.o $(SOURCE) $(FFT3D) $(LIB) $(LINK)
makeparam: $(SOURCE) $(FFT3D) makeparam.o main.F $(INC)
$(FCL) -o makeparam $(LINK) makeparam.o $(SOURCE) $(FFT3D) $(LIB)
zgemmtest: zgemmtest.o base.o random.o $(INC)
$(FCL) -o zgemmtest $(LINK) zgemmtest.o random.o base.o $(LIB)
dgemmtest: dgemmtest.o base.o random.o $(INC)
$(FCL) -o dgemmtest $(LINK) dgemmtest.o random.o base.o $(LIB)
ffttest: base.o smart_allocate.o mpi.o mgrid.o random.o ffttest.o $(FFT3D) $(INC)
$(FCL) -o ffttest $(LINK) ffttest.o mpi.o mgrid.o random.o smart_allocate.o base.o $(FFT3D) $(LIB)
kpoints: $(SOURCE) $(FFT3D) makekpoints.o main.F $(INC)
$(FCL) -o kpoints $(LINK) makekpoints.o $(SOURCE) $(FFT3D) $(LIB)
clean:
-rm -f *.g *.f *.o *.L *.mod ; touch *.F
main.o: main$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c main$(SUFFIX)
xcgrad.o: xcgrad$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcgrad$(SUFFIX)
xcspin.o: xcspin$(SUFFIX)
$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcspin$(SUFFIX)
makeparam.o: makeparam$(SUFFIX)
$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c makeparam$(SUFFIX)
makeparam$(SUFFIX): makeparam.F main.F
#
# MIND: I do not have a full dependency list for the include
# and MODULES: here are only the minimal basic dependencies
# if one strucuture is changed then touch_dep must be called
# with the corresponding name of the structure
#
base.o: base.inc base.F
mgrid.o: mgrid.inc mgrid.F
constant.o: constant.inc constant.F
lattice.o: lattice.inc lattice.F
setex.o: setexm.inc setex.F
pseudo.o: pseudo.inc pseudo.F
poscar.o: poscar.inc poscar.F
mkpoints.o: mkpoints.inc mkpoints.F
wave.o: wave.inc wave.F
nonl.o: nonl.inc nonl.F
nonlr.o: nonlr.inc nonlr.F
$(OBJ_HIGH):
$(CPP)
$(FC) $(FFLAGS) $(OFLAG_HIGH) $(INCS) -c $*$(SUFFIX)
$(OBJ_NOOPT):
$(CPP)
$(FC) $(FFLAGS) $(INCS) -c $*$(SUFFIX)
fft3dlib_f77.o: fft3dlib_f77.F
$(CPP)
$(F77) $(FFLAGS_F77) -c $*$(SUFFIX)
.F.o:
$(CPP)
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)
.F$(SUFFIX):
$(CPP)
$(SUFFIX).o:
$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)
# special rules
#———————————————————————–
# these special rules are cummulative (that is once failed
# in one compiler version, stays in the list forever)
# -tpp5 | 6 | 7 P, PII-PIII, PIV |
# -xW use SIMD (does not pay of on PII, since fft3d uses double prec)
# all other options do no affect the code performance since -O1 is used
fft3dlib.o : fft3dlib.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
fft3dfurth.o : fft3dfurth.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
radial.o : radial.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
symlib.o : symlib.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
symmetry.o : symmetry.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
wave_mpi.o : wave_mpi.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
wave.o : wave.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
dynbr.o : dynbr.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
asa.o : asa.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
broyden.o : broyden.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)
us.o : us.F
$(CPP)
$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)
LDApU.o : LDApU.F
$(CPP)
$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)