VASP 5.2 编译安装

VASP是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包,它基于CASTEP 1989版开发。

在做量子力学相关的研究的时候,这个软件是必不可少的。鉴于VASP编译时比较麻烦,需要对Makefile有所了解,而使用VASP的一般都是非计算机专业的,所以编译安装起来难度较大,经常出这样那样的问题,而作者是计算机专业的,由于种种原因给别人编译了份VASP,这里就根据自己的编译经验写一篇安装参考。

编译时参考的资料

  1. vasp 5.2编译方法
  2. VASP编译方法以及错误汇总
  3. ifc和mpich并行编译vasp
  4. VASP on intel em64t and MKL
  5. GotoBLAS的安裝過程(Core2Duo)與如何加入VASP進行編譯
  6. GotoBlas的编译 – [并行运算]
  7. 关于vasp并行和串行的关系
  8. VASP手册

编译环境:

操作系统:Fedora release 13 (Goddard)

C编译器:gcc 4.4.5

Fortran编译器:ifort 11.1

MKL:10.2.6.038

MPI:openmpi-1.4.3

编译 VASP 的难点在于 Makefile 的修改,要根据自己的电脑硬件和软件环境选择合适的 Makefile 文件,然后修改,作者用的是makefile.linux_ifc_P4。

修改 Makefile 过程中要安装的软件和库:

  1. CPP预编译器
  2. Fortran 编译器
  3. BLAS数学库
  4. fftw傅里叶变换相关的库
  5. MPI环境

一个一个来解决

1)CPP预编译器。这个在Linux系统下如果安装了gcc编译环境的话,一般都有,不同发行版有不同的安装方法,都很方便

2)Fortran 编译器可以有很多选择,一般都用intel的ifort,以前是ifc,因为它有非商业版的,只要你用于非商业方面的开发,就可以用这个编译器,它的性能也不错,专门针对intel cpu优化,还有相应的MKL数学库,所以作为首选。在google中搜索关键字“intel fortran compiler non-commercial“,搜索结果的前两个就是。

3)BLAS数学库,这个就用intel的MKL,也是非商业版(intel的MKL库下载地址和编译器在一个地方,所以要用MKL的话可以用2的方法找下载地址)。作者在Makefile中的注释推荐用Kazushige Goto’s BLAS,说这个更快,所以我们也可以用这个, Goto’s BLAS在这里下载,http://www.tacc.utexas.edu/tacc-projects/gotoblas2/downloads/。

4)fftw傅里叶变换相关的库。去这里http://www.fftw.org/下载最新版的即可。

5)MPI编译器。我们用openmpi,这是MPI的开源实现,这里http://www.open-mpi.org下载。

各个软件和库的编译安装在参考文献中都能找到,就不再详细列出。

值得注意的问题

一是 intel编译器如何下载以前的版本。

在下载时展开Additional downloads, updates, and versions.

会看 从下拉菜单中选择其它软件包:

然后选择想要的就行了。

intel编译器旧版本下载

二是拷贝 fftw3.f 到vasp代码目录时注意,make clean会删除fftw3.f,下次make之前要再次拷贝。

贴一下我的makefile,这是并行的版本

.SUFFIXES: .inc .f .f90 .F

#———————————————————————–

# Makefile for Intel Fortran compiler for Pentium/Athlon/Opteron

# bases systems

# we recommend this makefile for both Intel as well as AMD systems

# for AMD based systems appropriate BLAS and fftw libraries are

# however mandatory (whereas they are optional for Intel platforms)

#

# The makefile was tested only under Linux on Intel and AMD platforms

# the following compiler versions have been tested:

# – ifc.7.1 works stable somewhat slow but reliably

# – ifc.8.1 fails to compile the code properly

# – ifc.9.1 recommended (both for 32 and 64 bit)

# – ifc.10.1 partially recommended (both for 32 and 64 bit)

# tested build 20080312 Package ID: l_fc_p_10.1.015

# the gamma only mpi version can not be compiles

# using ifc.10.1

#

# it might be required to change some of library pathes, since

# LINUX installation vary a lot

# Hence check *\*ALL** options in this makefile very carefully

#———————————————————————–

#

# BLAS must be installed on the machine

# there are several options:

# 1) very slow but works:

# retrieve the lapackage from ftp.netlib.org

# and compile the blas routines (BLAS/SRC directory)

# please use g77 or f77 for the compilation. When I tried to

# use pgf77 or pgf90 for BLAS, VASP hang up when calling

# ZHEEV (however this was with lapack 1.1 now I use lapack 2.0)

# 2) more desirable: get an optimized BLAS

#

# the two most reliable packages around are presently:

# 2a) Intels own optimised BLAS (PIII, P4, PD, PC2, Itanium)

# http://developer.intel.com/software/products/mkl/

# this is really excellent, if you use Intel CPU’s

#

# 2b) probably fastest SSE2 (4 GFlops on P4, 2.53 GHz, 16 GFlops PD,

# around 30 GFlops on Quad core)

# Kazushige Goto’s BLAS

# http://www.cs.utexas.edu/users/kgoto/signup_first.html

# http://www.tacc.utexas.edu/resources/software/

#

#———————————————————————–

# all CPP processed fortran files have the extension .f90

SUFFIX=.f90

#———————————————————————–

# fortran compiler and linker

#———————————————————————–

FC=ifort

# fortran linker

FCL=$(FC)

#———————————————————————–

# whereis CPP ?? (I need CPP, can’t use gcc with proper options)

# that’s the location of gcc for SUSE 5.3

#

# CPP_ = /usr/lib/gcc-lib/i486-linux/2.7.2/cpp -P -C

#

# that’s probably the right line for some Red Hat distribution:

#

# CPP_ = /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -P -C

#

# SUSE X.X, maybe some Red Hat distributions:

CPP_ = ./preprocess <$*.F /usr/bin/cpp -P -C -traditional >$*$(SUFFIX)

#———————————————————————–

# possible options for CPP:

# NGXhalf charge density reduced in X direction

# wNGXhalf gamma point only reduced in X direction

# avoidalloc avoid ALLOCATE if possible

# PGF90 work around some for some PGF90 / IFC bugs

# CACHE_SIZE 1000 for PII,PIII, 5000 for Athlon, 8000-12000 P4, PD

# RPROMU_DGEMV use DGEMV instead of DGEMM in RPRO (depends on used BLAS)

# RACCMU_DGEMV use DGEMV instead of DGEMM in RACC (depends on used BLAS)

#———————————————————————–

CPP = $(CPP_) -DHOST="LinuxIFC" \

-Dkind8 -DCACHE_SIZE=12000 -DPGF90 -Davoidalloc -DNGXhalf \

# -DRPROMU_DGEMV -DRACCMU_DGEMV

#———————————————————————–

# general fortran flags (there must a trailing blank on this line)

# byterecl is strictly required for ifc, since otherwise

# the WAVECAR file becomes huge

#———————————————————————–

FFLAGS = -I/opt/intel/mkl/10.2.6.038/include -I/opt/intel/mkl/10.2.6.038/include/fftw -FR -lowercase -assume byterecl

#———————————————————————–

# optimization

# we have tested whether higher optimisation improves performance

# -axK SSE1 optimization, but also generate code executable on all mach.

# xK improves performance somewhat on XP, and a is required in order

# to run the code on older Athlons as well

# -xW SSE2 optimization

# -axW SSE2 optimization, but also generate code executable on all mach.

# -tpp6 P3 optimization

# -tpp7 P4 optimization

#———————————————————————–

# ifc.9.1, ifc.10.1 recommended

OFLAG=-O3

OFLAG_HIGH = $(OFLAG)

OBJ_HIGH =

OBJ_NOOPT =

DEBUG = -FR -O0

INLINE = $(OFLAG)

#———————————————————————–

# the following lines specify the position of BLAS and LAPACK

# VASP works fastest with the libgoto library

# so that’s what we recommend

#———————————————————————–

# mkl.10.0

# set -DRPROMU_DGEMV -DRACCMU_DGEMV in the CPP lines

#BLAS=-L/opt/intel/mkl100/lib/em64t -lmkl -lpthread

#BLAS=-L/opt/intel/mkl/10.2.6.038/lib/32 -lmkl_sequential -lmkl_core -lpthread

# even faster for VASP Kazushige Goto’s BLAS

# http://www.cs.utexas.edu/users/kgoto/signup_first.html

# parallel goto version requires sometimes -libverbs

#BLAS= /opt/libs/libgoto/libgoto.so

# LAPACK, simplest use vasp.5.lib/lapack_double

LAPACK= ../vasp.5.lib/lapack_double.o

# use the mkl Intel lapack

#LAPACK= -lmkl_lapack

#———————————————————————–

LIB = -L../vasp.5.lib -ldmy \

../vasp.5.lib/linpack_double.o $(LAPACK) \

$(BLAS)

# options for linking, nothing is required (usually)

LINK =

#———————————————————————–

# fft libraries:

# VASP.5.2 can use fftw.3.1.X (http://www.fftw.org)

# since this version is faster on P4 machines, we recommend to use it

#———————————————————————–

#FFT3D = fft3dfurth.o fft3dlib.o

# alternatively: fftw.3.1.X is slighly faster and should be used if available

FFT3D = fftw3d.o fft3dlib.o /opt/mathlibs/fftw/3.2.2/lib/libfftw3f.a

#=======================================================================

# MPI section, uncomment the following lines until

# general rules and compile lines

# presently we recommend OPENMPI, since it seems to offer better

# performance than lam or mpich

#

# !!! Please do not send me any queries on how to install MPI, I will

# certainly not answer them !!!!

#=======================================================================

#———————————————————————–

# fortran linker for mpi

#———————————————————————–

FC=mpif77

FCL=$(FC)

#———————————————————————–

# additional options for CPP in parallel version (see also above):

# NGZhalf charge density reduced in Z direction

# wNGZhalf gamma point only reduced in Z direction

# scaLAPACK use scaLAPACK (usually slower on 100 Mbit Net)

#———————————————————————–

CPP = $(CPP_) -DMPI -DHOST="LinuxIFC" -DIFC \

-Dkind8 -DCACHE_SIZE=4000 -DPGF90 -Davoidalloc -DNGZhalf \

-DMPI_BLOCK=8000 \

-DRPROMU_DGEMV -DRACCMU_DGEMV

#———————————————————————–

# location of SCALAPACK

# if you do not use SCALAPACK simply leave that section commented out

#———————————————————————–

BLAS=-L/opt/intel/mkl/10.2.6.038/lib/32 -lmkl_intel -lmkl_blacs_openmpi -liomp5 -lpthread -lmkl_sequential -lmkl_core -lpthread

#BLACS=$(HOME)/archives/SCALAPACK/BLACS/

#SCA_=$(HOME)/archives/SCALAPACK/SCALAPACK

#SCA= $(SCA_)/libscalapack.a \

# $(BLACS)/LIB/blacsF77init_MPI-LINUX-0.a $(BLACS)/LIB/blacs_MPI-LINUX-0.a $(BLACS)/LIB/blacsF77init_MPI-LINUX-0.a

SCA=

#———————————————————————–

# libraries for mpi

#———————————————————————–

LIB = -L../vasp.5.lib -ldmy \

../vasp.5.lib/linpack_double.o $(LAPACK) \

$(SCA) $(BLAS)

# FFT: fftmpi.o with fft3dlib of Juergen Furthmueller

FFT3D = fftmpi.o fftmpi_map.o fft3dfurth.o fft3dlib.o /opt/mathlibs/fftw/3.2.2/lib/libfftw3f.a

# alternatively: fftw.3.1.X is slighly faster and should be used if available

#FFT3D = fftmpi.o fftmpi_map.o fftw3d.o fft3dlib.o /opt/libs/fftw-3.1.2/lib/libfftw3.a

#FFT3D = fftmpi.o fftmpi_map.o fftw3d.o fft3dlib.o /opt/intel/mkl/10.2.6.038/lib/em64t/libfftw3xf_gnu.a

#———————————————————————–

# general rules and compile lines

#———————————————————————–

BASIC= symmetry.o symlib.o lattlib.o random.o

SOURCE= base.o mpi.o smart_allocate.o xml.o \

constant.o jacobi.o main_mpi.o scala.o \

asa.o lattice.o poscar.o ini.o xclib.o xclib_grad.o \

radial.o pseudo.o mgrid.o gridq.o ebs.o \

mkpoints.o wave.o wave_mpi.o wave_high.o \

$(BASIC) nonl.o nonlr.o nonl_high.o dfast.o choleski2.o \

mix.o hamil.o xcgrad.o xcspin.o potex1.o potex2.o \

metagga.o constrmag.o cl_shift.o relativistic.o LDApU.o \

paw_base.o egrad.o pawsym.o pawfock.o pawlhf.o paw.o \

mkpoints_full.o charge.o dipol.o pot.o \

dos.o elf.o tet.o tetweight.o hamil_rot.o \

steep.o chain.o dyna.o sphpro.o us.o core_rel.o \

aedens.o wavpre.o wavpre_noio.o broyden.o \

dynbr.o rmm-diis.o reader.o writer.o tutor.o xml_writer.o \

brent.o stufak.o fileio.o opergrid.o stepver.o \

chgloc.o fast_aug.o fock.o mkpoints_change.o sym_grad.o \

mymath.o internals.o dimer_heyden.o dvvtrajectory.o vdwforcefield.o \

hamil_high.o nmr.o force.o \

pead.o subrot.o subrot_scf.o pwlhf.o gw_model.o optreal.o davidson.o \

electron.o rot.o electron_all.o shm.o pardens.o paircorrection.o \

optics.o constr_cell_relax.o stm.o finite_diff.o elpol.o \

hamil_lr.o rmm-diis_lr.o subrot_cluster.o subrot_lr.o \

lr_helper.o hamil_lrf.o elinear_response.o ilinear_response.o \

linear_optics.o linear_response.o \

setlocalpp.o wannier.o electron_OEP.o electron_lhf.o twoelectron4o.o \

ratpol.o screened_2e.o wave_cacher.o chi_base.o wpot.o local_field.o \

ump2.o bse.o acfdt.o chi.o sydmat.o

INC=

vasp: $(SOURCE) $(FFT3D) $(INC) main.o

rm -f vasp

$(FCL) -o vasp main.o $(SOURCE) $(FFT3D) $(LIB) $(LINK)

makeparam: $(SOURCE) $(FFT3D) makeparam.o main.F $(INC)

$(FCL) -o makeparam $(LINK) makeparam.o $(SOURCE) $(FFT3D) $(LIB)

zgemmtest: zgemmtest.o base.o random.o $(INC)

$(FCL) -o zgemmtest $(LINK) zgemmtest.o random.o base.o $(LIB)

dgemmtest: dgemmtest.o base.o random.o $(INC)

$(FCL) -o dgemmtest $(LINK) dgemmtest.o random.o base.o $(LIB)

ffttest: base.o smart_allocate.o mpi.o mgrid.o random.o ffttest.o $(FFT3D) $(INC)

$(FCL) -o ffttest $(LINK) ffttest.o mpi.o mgrid.o random.o smart_allocate.o base.o $(FFT3D) $(LIB)

kpoints: $(SOURCE) $(FFT3D) makekpoints.o main.F $(INC)

$(FCL) -o kpoints $(LINK) makekpoints.o $(SOURCE) $(FFT3D) $(LIB)

clean:

-rm -f *.g *.f *.o *.L *.mod ; touch *.F

main.o: main$(SUFFIX)

$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c main$(SUFFIX)

xcgrad.o: xcgrad$(SUFFIX)

$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcgrad$(SUFFIX)

xcspin.o: xcspin$(SUFFIX)

$(FC) $(FFLAGS) $(INLINE) $(INCS) -c xcspin$(SUFFIX)

makeparam.o: makeparam$(SUFFIX)

$(FC) $(FFLAGS)$(DEBUG) $(INCS) -c makeparam$(SUFFIX)

makeparam$(SUFFIX): makeparam.F main.F

#

# MIND: I do not have a full dependency list for the include

# and MODULES: here are only the minimal basic dependencies

# if one strucuture is changed then touch_dep must be called

# with the corresponding name of the structure

#

base.o: base.inc base.F

mgrid.o: mgrid.inc mgrid.F

constant.o: constant.inc constant.F

lattice.o: lattice.inc lattice.F

setex.o: setexm.inc setex.F

pseudo.o: pseudo.inc pseudo.F

poscar.o: poscar.inc poscar.F

mkpoints.o: mkpoints.inc mkpoints.F

wave.o: wave.inc wave.F

nonl.o: nonl.inc nonl.F

nonlr.o: nonlr.inc nonlr.F

$(OBJ_HIGH):

$(CPP)

$(FC) $(FFLAGS) $(OFLAG_HIGH) $(INCS) -c $*$(SUFFIX)

$(OBJ_NOOPT):

$(CPP)

$(FC) $(FFLAGS) $(INCS) -c $*$(SUFFIX)

fft3dlib_f77.o: fft3dlib_f77.F

$(CPP)

$(F77) $(FFLAGS_F77) -c $*$(SUFFIX)

.F.o:

$(CPP)

$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)

.F$(SUFFIX):

$(CPP)

$(SUFFIX).o:

$(FC) $(FFLAGS) $(OFLAG) $(INCS) -c $*$(SUFFIX)

# special rules

#———————————————————————–

# these special rules are cummulative (that is once failed

# in one compiler version, stays in the list forever)

# -tpp5 6 7 P, PII-PIII, PIV

# -xW use SIMD (does not pay of on PII, since fft3d uses double prec)

# all other options do no affect the code performance since -O1 is used

fft3dlib.o : fft3dlib.F

$(CPP)

$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

fft3dfurth.o : fft3dfurth.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

radial.o : radial.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symlib.o : symlib.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

symmetry.o : symmetry.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave_mpi.o : wave_mpi.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

wave.o : wave.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

dynbr.o : dynbr.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

asa.o : asa.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

broyden.o : broyden.F

$(CPP)

$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

us.o : us.F

$(CPP)

$(FC) -FR -lowercase -O1 -c $*$(SUFFIX)

LDApU.o : LDApU.F

$(CPP)

$(FC) -FR -lowercase -O2 -c $*$(SUFFIX)

孤独的北山羊 /
Published under (CC) BY-NC-SA in categories Resources  Scientific Tools  tagged with Makefile  VASP  安装